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Summary. Phase transitions in equilibrium have traditionally been classified as 
first-order or second-order (critical). The essential difference between the two is 
whether the order parameter exhibits a discontinuous or a continuous behavior at 
the transition point. In the second half of the last century, second-order phase transi-
tions were extensively studied. Concepts such as the lack of characteristic scales, 
divergence of correlation length, criticality, critical exponents, and universality were 
established. Very powerful techniques, such as the renormalization group approach, 
were developed as well. In the last 20 years, the focus has been on first-order phase 
transitions (FOPTs). Theoretically, systems slowly driven across a FOPT exhibit an 
equilibrium behavior with a single discontinuity of the order parameter. However, 
even when driven very slowly, they often evolve following a non-equilibrium 
metastable trajectory. This trajectory, instead of consisting of a single macroscopic 
discontinuity, exhibits many small discontinuities, or “avalanches,” with sizes ranging 
from the microscopic to the macroscopic. This behavior is an example of the 
“avalanche dynamics” discussed herein. The essential difference that distinguishes 
this behavior from other non-equilibrium intermittent dynamics is the lack of charac-
teristic scales. This is why the term “critical” is applied to these systems, despite the 
fact that they undergo a FOPT. For this phenomenon to occur, two ingredients are 
needed: quenched-in disorder and athermal behavior, a consequence of low thermal 
fluctuations. However, “avalanche dynamics” is not limited to systems with FOPTs 
but may also occur in heterogeneous systems irreversibly driven by an instability. A 
second example discussed in this article is the case of the mechanical failure of 
porous materials under compression, for which disorder and athermal behavior play 
crucial roles. [Contrib Sci 11(2): 153-162 (2015)]
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Matter is organized as structures with different properties on 
both the macroscopic and the mesoscopic scale, the so-called 
phases. The relevant macroscopic properties are typically 
measured by extensive thermodynamic variables, such as vol-
ume (V), magnetization (M), polarization (P), and strain (ε).

A phase transition consists of a microscopic reorganiza-
tion that alters some of these macroscopic properties of mat-
ter [12,23]. This reorganization can be interpreted as compe-
tition between three terms: internal energy ( U ), entropy ( S ), 
and the energy due to external forces. The three terms de-
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fine the Gibbs free energy ( G ). For instance, for a system 
that interacts with the surroundings only through hydrostatic 
pressure ( p ) and temperature ( T ), G can be written as: 

G = U ‒ TS ‒ (‒pV)   (1)

In general, there can be many terms like the one defined 
by Eq. (1), which is related to the work performed by external 
forces. Such terms are always written as the product of an in-
tensive variable, whether pressure (‒p), magnetic field ( H ), 
electric field (E), or stress (σ), and its conjugated extensive 
variable, i.e.: ( pV− ), HM , EP , or σε . Under slowly chang-
ing external conditions, systems relax to the equilibrium 
state, at which G is at an absolute minimum. For instance, an 
increase of T  (at constant p ) may cause the system to 
choose a state with higher entropy ( S ) and lower internal 
energy (U ). These changes usually lead to a smooth re-
sponse of the system, except at first-order phase transitions 
(FOPTs), as in the case of liquid–vapor phase transitions, in 
which entropy, energy, and volume undergo a sharp macro-
scopic change (related to the exchange of latent heat).

A second example is an increase of p  at constant T , which 
may cause the system to choose a state with a lower volume (V ) 
and lower entropy ( S ), as occurs abruptly during condensation. 
Therefore, FOPTs can be induced by changes in temperature or 
external forces. FOPTs are also seen in the singular behavior of 
thermodynamic response functions related to derivatives of ex-
tensive properties: specific heat ( /dU dT ), compressibility 
( /dV dT ), susceptibilities ( /dM dH and /dP dE ), and elastic 
moduli ( /d dε σ ).

FOPTs are widespread in nature. Some are very familiar, 
such as the freezing and boiling of water; others are related 
to changes in the crystallographic structure of solids or to the 
magnetic field induced magnetization switching of iron (be-
low a given temperature, referred to as the Curie tempera-
ture, cT ). Some phase transitions involve more exotic prop-
erties, such as superconductivity or superfluidity.

Future technological innovation will require an under-
standing of both natural and man-made materials and of the 
methods to achieve their control. The development of in-
creasingly smaller sensors and actuators awaits detailed 
knowledge of the equilibrium and out-of-equilibrium behav-
iors of materials driven by external forces and fields. Materi-
als that respond with large variations in their order parame-
ter when driven by relatively small forces are precisely those 
that exhibit a FOPT. Historically, the first motors were based 
on the expansion and contraction of gases. Nevertheless, 
motors only became truly powerful when the liquid-vapor 

FOPT was exploited in the steam engine. Similarly, today’s 
sensors and actuators are designed using ferroic or multifer-
roic materials involving FOPTs. Thus, both knowledge of the 
discontinuous dynamics of these systems during the transi-
tion and the ability to control this process are of extreme im-
portance in the development of applications.

Landau theory of FOPTs

A simple framework that provides an understanding of the 
occurrence of FOPTs is the Landau theory [10]. It also pro-
vides a basic description of the hysteretic behavior of ather-
mal systems and of the occurrence of avalanche dynamics in 
disordered-athermal systems. The theory was originally de-
veloped for continuous phase transitions but it was soon re-
alized that, in some cases, it was also suitable to describe 
FOPTs. Firstly, the relevant order parameter for the transi-
tion, i.e., the extensive variable that exhibits macroscopic 
discontinuity, must be identified. Secondly, the free energy 
must be expanded in power series in the order parameter, 
including only the terms allowed by the symmetry of the 
problem. As an example, the case of a uniaxial ferromagnet 
under an applied external field is shown in Fig. 1. The two 
intensive control variables are the temperature ( T ) and the 
external field along the z-axis ( H ). Here, the order parame-
ter is the magnetization ( M ), which exhibits a discontinuity 
at the transition, below the Curie temperature ( cT ). The 
phase diagram (Fig. 1, left) shows a FOPT (dashed line) ex-
actly at H = 0. Due to symmetry reasons, the two ferromag-
netic phases, with M > 0 and M < 0, are completely equiva-
lent when subjected to an inversion operation. The FOPT line 
ends at the critical point, at cT . Let us assume that we drive 
the system at low enough temperatures, by changing H  
from a very large to a very low value, as indicated by the blue 
arrow in the phase diagram of Fig. 1. 

The expansion of the Gibbs energy in terms of the magne-
tization will be:

2 4( ) ...G M AM bM HM= + + −  (2)

Note that, taking into account symmetry considerations, 
in Eq. (2) only even terms are allowed, except for the term 

HM−  already discussed in the previous section. This is be-
cause symmetry between the two ferromagnetic phases is 
broken in the presence of an external field. In general, the 
coefficients in the expansion A , b … depend on tempera-
ture. To a first approximation these dependences can be ig-
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nored, except for parameter A . This first term in the expan-
sion is expected to vary rapidly near the critical temperature 

cT . Its dependence on temperature is usually assumed to be 
of the form:

( )cA a T T= −  (3)

Note that in Eq. (3), A vanishes exactly at cT ; it is nega-
tive for T  < cT and positive for T  > cT .

The panel in the center of Fig. 1 shows the behavior of the 
Landau free energy [ ( )G M ] for values of the field ( H ) that 
range from very large and positive (Fig. 1, top) to very large 
and negative (Fig. 1, bottom). Note the existence of two wells 
precisely due to the fact that T  < cT  and A is negative. Above 

cT  ( A  > 0), the Landau free energy will exhibit a unique well 
and the FOPT will not occur. Note also that the effect of the 
external field [given by the last linear term in the expan-
sion (HM− ) is simply to tilt the double-well function. 

As explained in the Introduction, the system chooses the 
equilibrium state that corresponds to the global minimum of 

( )G M . For positive fields the equilibrium value of M  will 
correspond to the well on the right hand side ( M  > 0) and 
for negative fields to the well on the left hand side ( M < 0). 
At H  = 0, the two wells have the same depth at symmetric 
positions 0M± . The system will therefore display a discon-
tinuous change of magnetization ( 02M M∆ = ) as the field 

moves from positive to negative values.
The panel on the right in Fig. 1 shows the corresponding 

behavior of the magnetization as discussed. The equilibrium 
trajectory is shown by a thick line, displaying the discontinu-
ity at H  = 0. At exactly H  = 0, the two phases (correspond-
ing to the two symmetric wells) will coexist, giving rise to a 
heterogeneous microstructure. This simple version of the 
Landau theory cannot provide a detailed description of the 
coexisting state. The details will be determined by the sys-
tem’s shape and surfaces and by interaction terms such as 
those of demagnetizing fields (in ferromagnets) or elastic 
forces (in ferroelastics).

An important factor that must be taken into account in 
order to understand avalanche dynamics is the role of ther-
mal fluctuations. For a system to follow an equilibrium trajec-
tory, microscopic thermal fluctuations are needed because 
they allow temporal and spatial deviations of the energy 
from its exact value at the minimum. The system, therefore, 
is able to explore the phase space and jump over energetic 
barriers. This ability is essential in the vicinity of a FOPT for 
the system to abandon a local minimum and jump into a 
global minimum. This can be understood from the central 
panel in Fig. 1. As soon as the field ( H ) becomes infinitesi-
mally negative, the system should jump towards the well on 
the left hand side.

There are several scenarios in which thermal fluctuations 
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Fig. 1. (A) Schematic representation of the phase diagram of a uniaxial ferromagnet under athermal conditions. The dashed 
line is the equilibrium first-order phase transition (FOPT); the continuous lines indicates the metastability limits, in which 
the transition occurs in the perfectly athermal case. The two colors (blue and red) correspond to the two directions of the 
field variation: from +∞ to –∞ (blue) or from –∞ to +∞ (red). (B) Free energy [G(M)] for different field values as indicated 
by the legend. The blue dot represents the metastable evolution of the system when the field is changed from +∞ to –∞. 
(C) Magnetization vs. field [M(H)], in which hysteresis depends on the direction of the field variation. The dashed lines indi-
cate the position of the jumps when a certain degree of thermal fluctuations is allowed.

A B C
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become irrelevant. In some cases the reasons are kinetic: the 
system is externally driven very rapidly compared to the time 
needed to explore the phase space. In other cases, the exis-
tence of long-range forces (of an elastic, magnetic, or electri-
cal nature) may enormously increase the size of the energetic 
barriers separating the minima of the free energy. In both 
cases the consequence is that the system will not follow an 
equilibrium path and will remain trapped in local (metasta-
ble) minima, as shown by the blue dots in the central panel of 
Fig. 1. This gives rise to hysteretic (out-of-equilibrium) behav-
ior [3], an effect well known to occur in many FOPTs. For in-
stance, liquid water at atmospheric pressure may become 
undercooled below 0ºC and freeze (phase change) at much 
lower temperatures. The right-hand panel in Fig. 1 also shows 
the trajectories that the system will follow in the case of its 
having a completely athermal character (thin continuous 
lines with arrows). In this case, the transition to the absolute 
minimum only occurs when the local minima disappear. Note 
that the transitions occur at values of the field ( H ) that de-
pend on whether the field is increased or decreased. The dif-
ference between these two fields provides a measure of hys-
teresis.

In general, if the athermal character is not strictly ideal, 
the system may display the transition when the local mini-
mum is shallow enough. In this case hysteresis will depend 
on the rate at which the external field is driven (dashed lines 
in the right-hand panel of Fig. 1). In the ideal athermal case, 
hysteresis becomes rate independent. In the phase diagram, 
the transitions will not occur when the equilibrium FOPT line 
at H = 0 is crossed but, instead, when the so-called metasta-
bility limits are exceeded. In the left-hand panel in Fig. 1, the 
continuous blue and red lines show the metastability limits 
corresponding to trajectories that decrease or increase the 
field, respectively.

We now discuss the role of the second factor that is need-

ed for avalanche dynamics to occur: disorder. Real materials 
are never perfect. Even crystals exhibit inhomogeneities in 
the form of dislocations, vacancies, lack of stoichiometry, and 
impurities. One of the consequences of disorder is that the 
free energy landscape of the system is much more complex 
than the free energy in the case of only two wells, as depict-
ed in Fig. 1. Different parts of the system may exhibit differ-
ent degrees of metastability with correspondingly different 
values of the local magnetizations. Of course, under these 
conditions, the correct description of the system cannot be 
provided with a free energy function of a simple scalar or-
der parameter such as the magnetization ( M ), but requires 
a description using a functional of an order parameter field 
[ ( )m x ], such that its integral over the whole system volume 
gives M . The free energy functional will then include terms 
coupling the local disorder with ( )m x . Nevertheless, for the 
purpose of simplicity, such as the example in the central 
panel of Fig. 1 we project the free energy functional into a 
function of the average magnetization (< M >). Therefore, 
the consequence of the existence of inhomogeneities is 
that the free energy displays multiple small wells separated 
by free energy barriers between the two phases with posi-
tive and negative magnetization, as shown in the left-hand 
panel of Fig. 2. 

If we now combine both the athermal behavior and the 
existence of disorder, the metastable trajectory of the sys-
tem will consist of a series of small jumps which take place 
every time the system relaxes from a local metastable mini-
mum and falls into a new one. A schematic representation 
is shown in the right-hand panel of Fig. 2. These jumps are 
avalanches. Their characteristic property is that, even if the 
system is driven very smoothly, the response of the system 
to the applied field is intermittent, in which periods without 
activity alternate with periods characterized by very fast 
changes in the order parameter.
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Fig. 2. (A) Schematic representation of the free 
energy [G(M)] for a system with a FOPT and 
quenched disorder. (B) Corresponding hysteresis 
loops exhibiting avalanches associated with the 
jumps from one metastable minimum to the next.
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Avalanche dynamics

In general, avalanches are microscopic and localized in small 
regions of the material. Direct measurement of the disconti-
nuities in the hysteresis loops is difficult, but it has been 
achieved, for instance, in the case of ferromagnets [9]. An ex-
ample is given in Fig. 3. More generally, avalanches are detect-
ed by experimental methods that are sensitive to the time de-
rivative of the order parameter. In the case of ferromagnetic 
materials, fast variations of magnetization can be detected by 
measuring the induced voltage in a coil. The avalanches, in this 
case, produce so-called Barkhausen noise [7]. In the example 
of ferroelastic materials exhibiting structural FOPTs for which 
the order parameter is a component of the strain tensor, the 
avalanches can be detected by the acoustic emission tech-
nique [21], in which rapid variations of strain in certain regions 
of the material induce the emission of ultrasounds that can be 
detected on the surface by the appropriate transducers. 

Figure 4 shows two examples of avalanches detected in 
ferromagnets [20] and ferroelastic materials. A similar be-
havior occurs in superconductors (vortex avalanches) [8] and 
ferroelectric materials (polarization avalanches). Avalanche 
sequences are often seen to be reproducible when the sys-
tem is cycled many times through the transition. This indi-
cates that the disorder is rather stationary (quenched disor-
der) and the system is highly athermal. However, as we dis-
cuss below, this is not always true. 

The experimental observation that has allowed avalanche 
dynamics to be classified within the paradigm of out-of-equi-
librium critical phenomena [19] is related to the statistical 
analysis of the properties of individual avalanches. For each 
jump event different properties can be measured, such as 
the amount of energy relaxed, the change in the order pa-
rameter, the duration of the avalanche, and the avalanche 
size. When these properties are measured for a large number 
of avalanches (for instance, those recorded during the whole 
transition), there is a significant difference compared to the 
statistics of standard measurements of physical properties. In 
general, due to the central limit theorem, the expectation is 
that the physical measurements will be Gaussian distributed, 
centered around an average value and with a certain stan-
dard deviation. However, avalanche properties are distribut-
ed according to probability densities with much fatter tails. 
Their distributions are typically described using a power-law 
probability density (Eq. 4):

( ) ~p x x α−  (4)

This indicates that the average values of such properties 
are meaningless in characterizing the system (i.e., they de-
pend on the observation window) and that the only charac-
teristic parameter is the power-law exponent α . Examples 
of such distributions for the case of Barkhausen noise in fer-
romagnets [6] or acoustic emission in ferroelastic materials 
[5] are shown in Fig. 5. Note that different materials exhibit 
the same values of the power-law exponents (universality) 
and that families (or classes) of materials can be identified. 

This lack of characteristic scales indicates that systems 
displaying avalanche dynamics diverge in their spatial and/or 
temporal correlations, overriding any other microscopically 
relevant scale. This is a clear indication that, in a generalized 
parameter space (using renormalization group language), the 
systems are located in the close vicinity of a dynamic critical 
point and the critical exponents are expected to be universal.

This hypothesis has been reinforced in studies of the evo-
lution of the avalanche size distribution when some athermal 
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Fig. 3. Direct measurement of the avalanches in the hysteresis loop in a 
Pr0.6Ca0.4Mn0.96Ga0.04O3 sample. The botton panel shows an enlargement of 
the region indicated by the dotted rectangle. (From [9]).



158

Avalanche dynamics

CONTRIBUTIONS to SCIENCE 11:153-162 (2015)www.cat-science.cat

ferroelastic systems are cycled many times across a FOPT 
[14]. An example of the experimental results obtained with a 
Cu-Al-Mn alloy exhibiting a structural phase transition is 
shown in Fig. 6. For some of these materials, the disorder 
(dislocations, etc.) is not totally quenched in. When the sys-
tem is driven through the transition, simultaneous with the 
avalanche response, the disorder is slightly modified. Thus, 
the avalanche sequences are not exactly reproducible when 
one cycle is compared to the next. It has been observed that 
as-cast samples that cross the FOPT for the first time do not 

exhibit a power-law distribution of avalanche sizes, but rather 
an exponentially dampened distribution (Eq. 5):

ë( ) ~ xp x x eα− −

 
                                       (5)

In the subsequent cycles through the transition, the cut-
off parameter λ  evolves towards zero, as shown in Fig. 6. 
After a certain number of cycles, the system reaches the true 
power-law distribution of avalanches characterized by the 
exponent α , which becomes quite stable. In other words, 
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Fig. 4. Indirect measurement of avalanches by (A) Barkhausen noise detection in a ferromagnetic transition in a Fe-Ni-Co alloy 
[20] and (B) acoustic emission detection in a ferroelastic (martensitic) transition in a Cu-Zn-Al alloy.

Fig. 5. Distribution of avalanche sizes in (A) ferromagnetic transitions [6] and (B) ferroelastic (martensitic) transitions [5]. The histo-
grams, in log-log scale, show the lack of a characteristic scale (power-law behavior). The data were obtained from different alloys and 
thus reveal a certain degree of universality.
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during the first few cycles, the system self-organizes its disor-
der and finds an optimal non-equilibrium path (avalanche 
sequence) that exhibits “critical” properties. This confirms 
the attractive character of the “critical” state. 

Models

Apart from the above-mentioned thermodynamic descrip-
tion in terms of macroscopic variables ( M ) or mesoscopic 
fields [ ( )m x ], a number of microscopic models of avalanche 
dynamics within FOPT have been proposed. The first was the 
random field Ising model (RFIM) with athermal dynamics, in-
troduced by J.P. Sethna and co-workers for the study of hys-
teresis and metastablity [17]. The RFIM is a modification of 
the standard ferromagnetic Ising model with an external field 
( H ) that describes a FOPT. On the sites of a regular lattice 
spin variables, iS , are defined whose values are ± 1. The 
Hamiltonian of the system is:
 

.

,

n n

i j i i i
i j i i

H S S H S h S= − − −∑ ∑ ∑   (6)

where the first sum extends over all the pairs of nearest 
neighbors.

Apart from the first two standard terms in Eq. (6), there is 
a new, last term that accounts for the local quenched disor-
der [Gaussian-distributed quenched random fields ih )], and 
the use of zero-temperature local relaxation dynamics. This is 
an athermal mechanism for the relaxation of the model when 

H  is varied; it consists of flipping spins individually, as soon 
as they decrease the energy of the system. The model has 
been solved numerically within the mean-field approxima-
tion, using Bethe lattices, for different spatial dimensions and 
via Renormalization Group approaches. Some details are still 
not fully understood, but the model well describes the occur-
rence of avalanche dynamics and the critical power-law dis-
tribution of avalanche sizes [18]. After the RFIM was intro-
duced, other models, including nucleation and the growth of 
many coexisting domains, were formulated, with similar 
properties [22].

Another set of models, focusing on the dynamics of a 
unique interface that separates the stable from the metasta-
ble phase, has been proposed. These models, designed to 
understand many out-of-equilibrium systems, collect ideas 
from the study of the pinning-depining transitions of an elas-
tic line and the self-organized criticality theory proposed by P. 
Bak [1]. In these models, the external field ( H ) provides the 
main driving force, but it should be compensated for by the 
elastic terms, which tend to reduce the interface curvature 
and the pinning forces due to the interaction of the interface 
with the local quenched disorder.

The main difference between these interface dynamics 
models and the RFIM is that, in the former, the avalanches 
turn out to be “critical” (power-law distributed) irrespective 
of the amount of disorder, whereas for the RFIM the system 
becomes critical only for a precise value of disorder (critical 
disorder).

Finally, it should be noted that none of these microscopic 

Fig. 6. Power-law exponent α and the exponential cor-
rection parameter λ for a Cu-Al-Mn alloy [14] as a func-
tion of the number of cycles through the ferroelastic 
(martensitic) transition. The data show the evolution 
of the disorder towards a self-organized situation, in 
which avalanches are power-law distributed (λ = 0).Co
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models is able to account for the self-organization in the evo-
lution of disorder. Only very recently, Pérez-Reche and col-
laborators [15,16] were able to unify the above-mentioned 
models and to offer an explanation for the evolution towards 
a critical self-organized path.

Porous materials under compression

In general, material fracture under external stress cannot be 
explained by the paradigm of FOPT and does not show ava-
lanche dynamics. One of the main difficulties is that, because 
fracture is irreversible, it is difficult to identify concepts such as 
an underlying equilibrium free energy, metastability, and hys-
teresis in the process. Nevertheless, in the case of heteroge-
neous materials (amorphous materials, porous materials, 
granular materials, etc.) recent work [4] has demonstrated the 
importance of models for dynamic phase transitions. It is not 
our aim to discuss this topic here, but we will show that, in the 
case of highly porous materials, failure under compression 
does indeed exhibit avalanche dynamics and that this process 
has many similarities with other non-equilibrium failure pro-
cesses, including earthquakes. Thus, avalanche dynamics 
could be a very general paradigm for understanding the physi-
cal mechanisms behind processes at very different scales.

The failure of porous materials under compression has 
recently received much attention, due to its relevance in 
forecasting the collapse of natural and artificial structures, 

whether mines, buildings, or bones. Because material failure 
is heralded by precursor activity, interest lies in whether or 
not this activity can be used for prediction. Laboratory ex-
periments have been carried out using many natural miner-
als and artificial materials. Here we describe, as an example, 
the results reported for Vycor [2,11], a material that consists 
of an interconnected quartz skeleton (SiO2) with 40% porosi-
ty. The average pore diameter is < 10 nm.

Materials at room temperature are placed between two 
plates and a compressional force is applied. The experiment 
can be optionally performed by imposing a lateral pressure 
or by controlling the speed of the plates (strain driven) or the 
force rate (stress driven). Here we focus on stress-driven ex-
periments without lateral pressure. Acoustic emission sen-
sors are embedded in the compression plates and detect ul-
trasonic events, just as seismographs detect earthquakes.

Figure 6 shows a typical experiment using Vycor. While 
the force is monotonously increased, the length of the sam-
ple, measured by a laser extensometer, decreases in inter-
mittent steps until a large drop occurs, corresponding to the 
failure of the sample. Acoustic emission activity (number of 
detected events per unit time) exhibits peaks of high activity 
not totally correlated with the decreases in sample height. 
The random process is therefore not homogeneous in time, 
but has a rate that varies from 10–2 to 103 events per second. 
Furthermore, acoustic activity continues after sample col-
lapse, indicating that the behavior of the material’s debris is 
similar to that of the intact sample. Events (avalanches) are 
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 Fig. 7. Experimental results corresponding to the uniaxial 
compression of a porous SiO2 sample (Vycor). (A) Force vs. 
time, (B) sample height vs. time, and (C) acoustic emission 
activity rate (in events per seconds). Note the logarithmic 
scale in the bottom panel.
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separated by waiting periods that range from 10–4 to 105 s. 
Analysis of the energies of each single event shows a power-
law distribution of energies (Eq. 7):

( ) ~p E E ε−  (7)

that spans eight orders of magnitude, as shown in Fig. 7. De-
spite the fact that the avalanche rate fluctuates enormously, 
the distribution ( )p E  is quite stationary and has a very well-
determined exponent ( ε = 1.39). Thus, the intermittent failure 
processes exhibit a lack of characteristic scales that allows 
them to be classified as an example of avalanche dynamics.

As mentioned above, the statistics of acoustic emission 
events exhibit many similarities with those of seismological 
problems. The power-law distribution of energies, despite 
the large differences in energy scales, is nothing more than a 
Gutenberg–Richter law describing earthquake magnitude. 
However, the similarities go far beyond this distribution. Sta-
tistical techniques for the analysis of waiting times, correla-
tions between avalanches, and the existence of aftershocks 
have revealed unexpected equivalences between the two 
phenomena. This opens up the possibility that an under-

standing of the avalanche dynamics during the compression 
of porous materials in the lab (labquakes) may, in the future, 
improve our understanding of earthquakes in the Earth’s 
crust. 
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